[1] https://www.buran-energia.com/energia/energia-consti-1eretage.php, retrieved: 15-03-2021 [2] The Dragonfly Entry and Descent System, Michael Wright, IPPW 2019 [3] C.V.Eckstrom. HIGH-ALTITUDE FLIGHT TEST OF A 40-FOOT-DIAMETER (12.2-METER) RINGSAIL PARACHUTE AT A DEPLOYMENT - MACH NUMBER OF 2.95. Langley Research Center. June 1970. Hampton (USA) [4] A.Sengupta, et Al. Ringsail parachutes for planetary entry applications. 2011 [5] R.E.Meyerson. Space Shuttle Orbiter Drag Parachute Design. 2001. Kent (USA) [6] J.J.Kennedy, C.H.Lowry . Space Shuttle Orbiter Drag Parachute System. 1992. Houston (USA) [7] B.Hendrickx, B.Vis. Energiya Buran: The soviet space shuttle. 2007. Springer [8] M.J.Ravnitzky et Al. To fall from space: parachutes and the space program. 1989. Santa Ana (USA) [9] https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-045-DFRC.html [10] NASA TM-4525, The development and flight test of a deployable precision landing system for spacecraft recovery, 1993 [11] https://www.nasa.gov/centers/dryden/multimedia/imagegallery/Spacewedge/Spacewedge_proj_desc.html [12] J.J. Givens et all, Galileo Atmospheric Entry Probe System: Design, Development and Test, 1983 (http://www.ninfinger.org/models/vault2014/Galileo%20probe/AIAA%20Papers%20Volume%20issue%201983%20%5bdoi%2010.2514-6.1983-98%5d%20--%20.pdf) [13] https://www.defensedaily.com/parachute-for-ares-first-stage-motor-passes-test/space/ [14] https://www.nasa.gov/mission_pages/constellation/ares/cluster_chute2.html [15] https://www.nasa.gov/pdf/230922main_1stStage_FS.pdf [16] Progress on Ares first stage propulsion, A.S. Priskos & B. Tiller, 2008 Joint propulsion conference. [17] Ares I First Stage Booster Deceleration System: An Overview, R. King, J.E. Hengel and D. Wolf, 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, 2009 [18] Knacke, Theo W. Parachute recovery systems design manual. Naval Weapons Center China Lake CA, 1991. [19] I. Clark, C. Tanner. A historical summary of design development and analysis of the disk gap band parachute [20] https://space.skyrocket.de/doc_sdat/bion-m.htm [21] https://space.skyrocket.de/doc_sdat/bion.htm [22] Vijay V. Duraisamy Francisco Pastrana Erik L. Seedhouse Sathya Gangadharan Leonid BuneginMariel Rico6 Pedro J. Llanos1, Kristina Andrijauskaite. Challenges of ERAU’s First Suborbital Flight Aboard Blue Origin’s New Shepard M7 for the Cell Research Experiment In Microgravity (CRExIM). 2019. URL:https://www.researchgate.net/publication/333810041_Challenges_of_ERAU's_First_Suborbital_Flight_Aboard_Blue_Origin's_New_Shepard_M7_for_the_Cell_Research_Experiment_In_Microgravity_CRExIM. [23] https://www.youtube.com/watch?v=ZKqpt4g5_yY&t=152s&ab_channel=BlueOrigin [24] F.D.Hillebrandt et Al. Low Velocity Airdrop Tests of an X-38 Backup Parachute Design. 2005. NASA [25] R.Machin et Al. An Overview Of The X-38 Prototype Crew Return Vehicle Development And Test Program. 1999. AIAA [26] J.M.Stein, R.A.Machin. The Development of a 100-ft Drogue Parachute for the X-38 Spacecraft. 2005. AIAA [27] https://www.dlr.de/bt/en/desktopdefault.aspx/tabid-4517/7393_read-5655/ [28] https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/EXPERT/Expert_Descent_and_Landing_System_Test_Campaign [29] https://www.researchgate.net/publication/252423923_European_Experimental_Reentry_Testbed_EXPERT [30] J.David. Ask an Expert – The Corona Spy Satellite. Smithsonian National Air and Space Museum. October 2010. retrieved from YouTube [31] A.S.Teitel. America Spying with the Corona Satellites. The Vintage Space. retrieved from YouTube [32] K.C.Ruffner. Corona: America’s First Satellite Program. 1995. Washington DC [33] https://www.nasa.gov/directorates/spacetech/small_spacecraft/feature/exo-brake_parachute [34] http://www.parabolicarc.com/2021/02/07/an-overview-of-nasas-technology-educational-satellites/#more-77623 [35] https://flightopportunities.nasa.gov/technologies/75/ [36] https://www.nasa.gov/content/nasa-launches-first-exo-brake-parachute-from-international-space-station/ [37] https://www.nasa.gov/image-feature/ames/techedsat-10-deploys [38] https://global.jaxa.jp/projects/rockets/orex/index.html [39] https://space.skyrocket.de/doc_sdat/orex.htm [40] https://nasa.fandom.com/wiki/Spaceplane [41] Inouye, Y. (1995). OREX flight-quick report and lessons learned. In Aerothermodynamics for space vehicles (Vol. 367, p. 271). [42] NASA. NASA selects two missions to study ‘lost habitable’ world of Venus. June 2021. Retrieved from: https://www.nasa.gov/press-release/nasa-selects-2-missions-to-study-lost-habitable-world-of-venus [43] Arney et Al. DAVINCI+: Deep atmosphere of Venus investigation of noble gases, chemistry and imaging, plus. 2020. 51st Lunar and Planetary Science conference [44] https://en.wikipedia.org/wiki/Martin_X-23_PRIME [45] https://www.thespacereview.com/article/3446/1 [46] https://space.skyrocket.de/doc_sdat/prime.htm [47] SV-5D PRIME Final Flight Summary, ER 14465, September 1967, Martin Marietta [48] Hallion, Richard. NASA's Contributions to Aeronautics. National Aeronautics and Space Administration, 2010. [49] https://space.skyrocket.de/doc_sdat/asset-asv.htm [50] https://space.skyrocket.de/doc_sdat/asset-aev.htm [51] https://en.wikipedia.org/wiki/ASSET_(spacecraft) [52] http://www.astronautix.com/a/asset.html [53] https://www.spaceline.org/cape-canaveral-rocket-missile-program/thor-asset-fact-sheet/ [54] https://www.buran-energia.com/bor/bor-desc.php [55] http://www.buran.ru/htm/molniya3.htm [56] http://www.buran.ru/htm/molniya4.htm [57] http://www.kosmonavtika.com/vaisseaux/bor/hist/hist.html [58] http://www.russianspaceweb.com/bor.html [59] https://en.wikipedia.org/wiki/Mikoyan-Gurevich_MiG-105 [60] Crew Module Atmospheric Reentry Experiment, ISRO, 2014, retrieved from https://www.isro.gov.in/Spacecraft/crew-module-atmospheric-re-entry-experiment-care [61] Crew Module Atmospheric Reentry Experiment, Wikipedia, 2021, retrieved from https://en.wikipedia.org/wiki/Crew_Module_Atmospheric_Re-entry_Experiment [62] http://www.astronautix.com/d/dash2002.html [63] Demonstrator of atmospheric re-entry system with hyperbolic velocity – DASH – Y. Morita, J. Kawaguchi, Y. Inatani, T. Abe [64] http://www.postwarv2.com/usa/ws/blossom.html [65] https://wsmrmuseum.com/2020/10/06/the-v-2-program-operation-backfire-to-the-hermes-project/5/ [66] https://www.wsmr.army.mil/PAO/WSHist/V2/Pages/V2RocketComponents.aspx [67] https://www.youtube.com/watch?v=A5PWjS131cs [68] https://apps.dtic.mil/sti/pdfs/AD0473471.pdf [69] http://www.russianspaceweb.com/phobos_grunt.html [70] https://arc-aiaa-org.tudelft.idm.oclc.org/doi/pdf/10.2514/6.2003-2171 [71] https://arc-aiaa-org.tudelft.idm.oclc.org/doi/pdf/10.2514/6.2003-2170 [72] https://arc-aiaa-org.tudelft.idm.oclc.org/doi/pdf/10.2514/6.2003-2153 [73] https://www.esa.int/Science_Exploration/Space_Science/Mars_Express/Beagle-2_lander_found_on_Mars [74] D.Dickinson et al. Balloon Launched Decelerator Program, post-test test report. BLDT Vehicle AV-4. September 1972. [75] D.Dickinson et al. Balloon Launched Decelerator Program, post-test test report. BLDT Vehicle AV-2. December 1972. [76] D.Dickinson et al. Balloon Launched Decelerator Program, post-test test report. BLDT Vehicle AV-1. September 1972. [77] https://www.nasa.gov/mission_pages/phoenix/main/index.html [78] Grover III, Myron R., Benjamin D. Cichy, and Prasun N. Desai. "Overview of the Phoenix entry, descent, and landing system architecture." Journal of Spacecraft and Rockets 48.5 (2011): 706-712. [79] Prince, Jill L., et al. "Mars phoenix entry, descent, and landing simulation design and modeling analysis." Journal of Spacecraft and Rockets 48.5 (2011): 756-764. [80] https://mars.nasa.gov/mars-exploration/missions/phoenix/ [81] D.J.Rigali et Al. Reentry Vehicle Flight Testing and Recovery Techniques. July 1980. AIAA 15th Thermophysics Conference. Colorado (US) [82] W.B.Pepper. Development of a Parachute Recovery System For a Reentry Nose Cone (NRV). September 1977. Sandia Laboratories. [83] Pepper Jr, W. B. (1980). Preliminary report on development of an interim parachute recovery system for a re-entry vehicle. Journal of Aircraft, 17(3), 218-224. [84] RIGALI, D., STERK, M., & Randmaa, J. (1980). Reentry vehicle flight testing and recovery techniques. In 15th Thermophysics Conference (p. 1455). [85] D.J.Rigali et Al. Reentry Vehicle Flight Testing and Recovery Techniques. July 1980. AIAA 15th Thermophysics Conference. Colorado (USA) [86] D.J.Rigali et Al. Reentry Vehicle Flight Testing and Recovery Techniques. July 1980. AIAA 15th Thermophysics Conference. Colorado (USA) [87] W.B.Pepper. Development of the parachute recovery system for the LBRV-2 reentry vehicle. 1984. Sandia National Laboratories. Albuquerque, New Mexico (USA) [88] D.J.Rigali et Al. Reentry Vehicle Flight Testing and Recovery Techniques. July 1980. AIAA 15th Thermophysics Conference. Colorado (US) [89] https://spj.sciencemag.org/journals/space/2021/9846185/ [90] https://www.nasa.gov/pdf/378699main_NASAFacts-IRVE.pdf [91] Litton, D., Bose, D., Cheatwood, F., Hughes, S., Wright, H., Lindell, M., ... & Olds, A. (2011, May). Inflatable re-entry vehicle experiment (IRVE)-4 overview. In 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar (p. 2580). [92] Olds, A., Beck, R., Bose, D. M., White, J., Edquist, K. T., Hollis, B. R., ... & Bowden, E. L. (2013). IRVE-3 Post-Flight Reconstruction. In AIAA Aerodynamic Decelerator Systems (ADS) Conference (p. 1390). [93] Hughes, S., Dillman, R., Starr, B., Stephan, R., Lindell, M., Player, C., & Cheatwood, F. (2005, May). Inflatable re-entry vehicle experiment (IRVE) design overview. In 18th AIAA aerodynamic decelerator systems technology conference and seminar (p. 1636). [94] O'Keefe, S., & Bose, D. (2010, August). IRVE-II post-flight trajectory reconstruction. In AIAA Atmospheric Flight Mechanics Conference (p. 7515). [95] Corliss, J., & Dillman, R. (2008, June). Overview of the Mars Sample Return Earth Entry Vehicle. Georgia Institute of Technology. [96] Vander Kam, J. C., & Corliss, J. Mars Sample Return Earth Entry Vehicle Progress and Development. In 17th International Planetary Probe Workshop (IPPW 2020) Cancelled (No. ARC-E-DAA-TN78850). [97] RX29_DEADALUS2_SED_v3-0__23Aug20, Daedalus 2 SED [98] https://www.guancha.cn/industry-science/2018_09_05_470840.shtml?s=wapzwyxgtjbt?web [99] Oleson, S. R., & Landis, G. (2018). Triton Hopper: Exploring Neptune’s Captured Kuiper Belt Object. NASA/TM-2018-219423. [100] Delurgio, P., Reinhard, D., Taylor, A., Wells, J., Graves, D., Graves, D., ... & Wells, J. (1997, June). Recovery system for the evolved expendable launch vehicle. In 14th Aerodynamic Decelerator Systems Technology Conference (p. 1513). [101] Delurgio, P. (1999, June). Evolution of the Ringsail parachute. In 15th Aerodynamic Decelerator Systems Technology Conference (p. 1700). [102] https://en.wikipedia.org/wiki/National_Security_Space_Launch#Initial_program_goals [103] https://spaceflightnow.com/2015/04/14/ula-chief-explains-reusability-and-innovation-of-new-rocket/ [104] https://en.wikipedia.org/wiki/Hayabusa2 [105] https://solarsystem.nasa.gov/missions/hayabusa-2/in-depth/ [106] https://www.hayabusa2.jaxa.jp/en/topics/20201204_ts3/ [107] Harvey, B. (2007) Russian Planetary Exploration: History, Development, Legacy and Prospects. Springer. Praxis Publishing. Chichester (UK) [108] Kushchenko, A. A. The Interplanetary Space Probes Venera-2 and Venera-3. Nauka publishing house. Moscow (USSR) [109] Avdueski, V. S. et Al. (1970) Preliminary results of measurements of space probes Venera 5 and Venera 6 in the atmosphere of Venus – summary. Radio Science Volume 5, p 333-337. [110] M.J. Mackowski. The Lost Missions of Gemini. 2021. AIAA. Video presentation. [111] Huntress, W. T., & Marov, M. I. (2011). Soviet Robots in the Solar System: Mission Technologies and Discoveries (pp. 235-240). London: Springer. [112] Huntress, W. T., & Marov, M. I. (2011). Soviet Robots in the Solar System: Mission Technologies and Discoveries (pp. 268-275). London: Springer. [113] Siddiqi, A. A. (2018). Beyond Earth: A chronicle of deep space exploration, 1958-2016. National Aeronautics and Space Administration (pp. 93-94), Office of Communications, NASA History Division. [114] https://en.wikipedia.org/wiki/Armadillo_Aerospace [115] https://space.skyrocket.de/doc_lau/stig-b.htm [116] https://spacenews.com/armadillos-stig-b-suborbital-rocket-suffers-another-abort/ [117] http://www.b14643.de/Spacerockets_2/United_States_7/Armadillo-TR/Description/Frame.htm [118] https://www.galacticexperiencesbydeprez.com/news_stigb.shtml [119] https://en.wikipedia.org/wiki/Exos_Aerospace [120] https://exosaero.com/who-we-are/ [121] https://space.skyrocket.de/doc_lau/stig-b.htm [122] https://spacenews.com/armadillo-stig-test-launch-marred-ballute-failure/#.UJj5ArQk_zI [123] https://web.archive.org/web/20110427210952/http://www.armadilloaerospace.com/n.x/Armadillo/Home/News?news_id=372 [124] R.O. Olsen et all, The utilization of starute decelerators for improved upper atmosphere measurements [125] V. Yushkov, Forced Inflation parachute for rocket payload recovery [126] Keldish, M. V. (1977) Venus Exploration with the Venera 9 and Venera 10 Spacecraft. Icarus 30. pp 605-625. Academic Press Inc. [127] Siddiqi, A. A. (2018) Beyond Earth, A chronicle of deep space exploration, 1958-2016. Second Edition. NASA History Program Office. Washington D.C. (USA) [128] Huntress, W. T., & Marov, M. I. (2011). Soviet Robots in the Solar System: Mission Technologies and Discoveries. London: Springer. [129] Huntress, W. T., & Marov, M. I. (2011). Soviet Robots in the Solar System: Mission Technologies and Discoveries (pp. 321-332). London: Springer. [130] Siddiqi, A. A. (2018). Beyond Earth: A chronicle of deep space exploration, 1958-2016. National Aeronautics and Space Administration (pp. 155-157), Office of Communications, NASA History Division. [131] https://en.wikipedia.org/wiki/Venera_13 [132] Ulivi, P., & Harland, D. M. (2007). Robotic Exploration of the Solar System: Part 1: The Golden Age 1957-1982 (pp. 285-289). Praxis Publishing Limited. [133] Siddiqi, A. A. (2018). Beyond Earth: A chronicle of deep space exploration, 1958-2016. National Aeronautics and Space Administration (pp. 148-149), Office of Communications, NASA History Division. [134] Ulivi, P., & Harland, D. M. (2007). Robotic Exploration of the Solar System: Part 1: The Golden Age 1957-1982 (pp.266-270). Praxis Publishing Limited. [135] https://space.skyrocket.de/doc_sdat/pioneer-13.htm [136] Yengst, W. (April 2010). Lightning Bolts: first manoeuvring reentry vehicles. Tate Publishing [137] Bunn, M. (1984) Review of US Military Research and Development. Chapter 6: Technology of Ballistic Missile Reentry Vehicles. Program in Science and Technology for International Security. Massachusetts Institute for Technology (USA). [138] https://adsabs.harvard.edu/pdf/1995ESASP.367...41S [139] http://www.astronautix.com/e/esaacrv.html [140] https://www.researchgate.net/publication/286556098_Mistral_air-launcheable_micro-satellite_with_reentry_capability_a_small_spacecraft_to_carry_out_several_missions_in_LEO [141] https://event.dlr.de/en/ila2022/refex/, December 2022 [142] Rickmers, Peter, et al. "ReFEx: Reusability Flight Experiment–A Project Overview." 8th European Conference for Aeronautics and Space Sciences (EUCASS), Conference on “Reusable Systems for Space Access”, July. 2019. [143] Schwarz, René, et al. "Overview of Flight Guidance, Navigation, and Control for the DLR Reusability Flight Experiment (ReFEx)." 8th European Conference for Aeronautics and Space Sciences (EUCASS), Conference on “Reusable Systems for Space Access”, July. 2019. [144] Bauer, Waldemar, et al. "Upcoming dlr reusability flight experiment." Proceedings of the International Astronautical Congress, IAC. 2017. [145] Bauer, Waldemar, et al. "DLR reusability flight experiment ReFEx." Acta Astronautica 168 (2020): 57-68. [146] https://www.dlr.de/content/en/images/2022/02/refex-reusability-flight-experiment.html, December 2022 [147] ISRO successfully demonstrates new technology with Inflatable Aerodynamic Decelerator (IAD) – a game changer with multiple applications for future missions. https://www.isro.gov.in/demonstrate_new_technology.html [148] https://www.isro.gov.in/media_isro/pdf/press_release/demonstrate_new_technology.pdf [149] ESA - Frequently asked questions on IXV [150] ESA - Reentry technologies [151] IXV – Intermediate Experimental Vehicle – Spacecraft & Satellites (spaceflight101.com) [152] NASA website. Adaptable Deployable Entry and Placement Technology (ADEPT). Jan 2021. [153] A. Cassel, P. Wercinski, R. Venkatapathy. ADEPT for interplanetary Small Satelite Missions (presentation). 2019. [154] P. Wercinski et Al. ADEPT Sounding Rocket One (SR-1) Flight Experiment Overview. 2017. IEEE [155] S. Dutta et Al. Adaptable Deployable Entry and Placement Technology Sounding Rocket One Modeling and Reconstruction. Journal of Spacecraft and Rockets. 2022. Vol 59. No 1. [156] https://www.spaceworks.aero/flight/red-25/ [157] RED Entry System Specification sheet (https://www.spaceworks.aero/wp-content/uploads/RED-Entry-System-Specs.pdf) [158] https://www.spaceworks.aero/flight/red-data2/ [159] https://www.spaceworks.aero/red-data2s-activated-and-installed-on-cygnus-in-prep-for-reentry-mission/ [160] https://www.spaceworks.aero/flight/red-phoenix/ [161] Project FIRE-1 Apollo Studies – NASA Documentary (1964) , https://www.youtube.com/watch?v=fYF_09ei_CU [162] https://en.wikipedia.org/wiki/Project_FIRE [163] Project FIRE: Integrated Post Flight Evaluation Report Flight No. 1, Report No GDA|BKF64-018, 30-10-1964 [164] Project FIRE: Integrated Post Flight Evaluation Report Flight II, Report No GDA|BKF65-042, 24-09-1965 [165] K. W. Ilif and M. F. Shafer. October 1995. A comparison of Hypersonic Vehicle Flight and Prediction Results. NASA Dryden Flight Research Center. Edwards, California (USA). [166] G. Leuenberger. Presentation: Hypersonics Overview. Strike and Aerospace Systems. 2019. [167] T.H.Phillips. 2003. A Common Aero Vehicle (CAV) Model, Description, and Employment Guide. Schafer Corporation. [168] R. E. Sampson. March 1990. Final Report of the USAKA Long Range Planning Study. Technical Report. US Army Strategic Defence Command. [169] Siddiqi, A. (2018). Beyond Earth: A Chronicle of deep space exploration. National Aeronautics and Space Administration, Washington, 1958-2016. [170] Marov, M. Y., & Huntress, W. T. (2011). Soviet Robots in the Solar System. Mission technologies and discoveries. Chichester: Springer-Praxis. [171] P.A.Gorin. (1998). Black “amber”: Russian Yantar-class optical reconnaissance satellites. Journal of the British Interplanetary Society. 55. pp 309-320. [172] V. Sorokin. (1997). Novosti Kosmonavtiki. Issue 17, 18, 19. Translated by J. McDowell. [173] P. Norris. (2008). Spies in the sky. Springer. Praxis Publishing. Chichester (UK) [174] Yengst, W. (April 2010). Lightning Bolts: first manoeuvring reentry vehicles. Tate Publishing [175] Smithsonian’s National Air and Space Museum, Online collections, retrieved from https://airandspace.si.edu/explore/collections [176] https://www.spacequip.eu/2023/06/11/chinas-rocket-boosters-achieve-controlled-landing-with-parachute-system/ [177] C. O'f Farrel, E.A. Leylek, M.A. Lobbia, K.J.Y. Siegel. 2023. ASPIRE2: The Mars Sample Return Retrieval Lander's Supersonic Parachute Test Program [178] http://www.astronautix.com/h/hl-20.html [179] https://en.wikipedia.org/wiki/HL-20_Personnel_Launch_System [180] Ehrlich, Carl F. Personnel Launch System (PLS) Study: Final Report (DRD 12). National Aeronautics and Space Administration, Langley Research Center, 1991. [181] https://sacd.larc.nasa.gov/vab/vab-projects/hl-20/ [182] D. K. Stumpf et al. (2017). Reentry Vehicle Development Leading to the Minuteman Avco Mark 5 and 11. Air Power History Vol. 63 No.3. pp. 13-36. Air Force Historical Foundation. [183] T. A. Heppenheimer. (2007). Facing the Heat Barrier, A History of Hypersonics. ISBN: 1493692569 [184] Krevor, Zachary, et al. "Dream chaser commercial crewed spacecraft overview." 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2011. [185] https://www.sierraspace.com/space-transportation/dream-chaser-spaceplane/, accessed 5-8-2023 [186] https://en.wikipedia.org/wiki/Dream_Chaser [187] https://aviationweek.com/defense-space/space/roscosmos-confirms-luna-25-crash [188] https://www.esa.int/Enabling_Support/Space_Transportation/IXV/Reentry_technologies [189] https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/Aerothermodynamics_of_aerocapture_and_high_speed_Earth_re-entry [190] https://elib.dlr.de/193002/ [191] https://www.space.com/news/live/nasa-osiris-rex-asteroid-bennu-sample-return-updates [192] https://www.nasa.gov/general/osiris-rex-landing-highlighted-on-this-week-at-nasa/ [193] https://science.nasa.gov/mission/osiris-rex/ [194] https://blogs.nasa.gov/osiris-rex/2023/09/24/osiris-rex-sample-capsule-released-for-landing-on-earth/ [195] https://blogs.nasa.gov/osiris-rex/2023/03/31/2020-2023-touchdown-and-goodbye/ [196] https://www.ariane.group/en/news/susie-the-reusable-space-transporter-european-style/ [197] https://www.esa.int/Enabling_Support/Space_Transportation/ESA_defines_elements_of_future_European_space_transportation_solutions [198] https://www.youtube.com/watch?v=__NGg_nNoMo&ab_channel=ArianeGroup [199] https://en.wikipedia.org/wiki/Space_Shuttle [200] Camarda, C. J. (2014). Space Shuttle Design and Lessons Learned. NATO Science and Technology Organization Lecture Series. [201] https://www.nasa.gov/space-shuttle/ [202] https://www.nasa.gov/wp-content/uploads/2023/04/2011.07.05-shuttle-era-facts.pdf [203] https://en.wikipedia.org/wiki/Space_Shuttle_orbiter [204] https://www.nasa.gov/wp-content/uploads/2023/04/wings-ch3a-pgs53-73.pdf [205] https://www.americaspace.com/2021/01/03/stopping-the-shuttle-remembering-the-drag-chute-30-years-on/ [206] D. K. Stumpf et al. (2017). Reentry Vehicle Development Leading to the Minuteman Avco Mark 5 and 11. Air Power History Vol. 63 No.3. pp. 13-36. Air Force Historical Foundation. [207] T. A. Heppenheimer. (2007). Facing the Heat Barrier, A History of Hypersonics. ISBN: 1493692569 [208] Advanced Reentry Vehicles. U.S. Centennial of Flight Commission. Last Accessed 06/01/2023. [209] Hendrickx, B., & Vis, B. (2007). Energiya-Buran: the Soviet space shuttle. Heidelberg: Springer. [210] https://en.wikipedia.org/wiki/Buran_(spacecraft)